SHORT COMMUNICATIONS

The Reactivities of Hydrated Electrons and OH Radicals in an Aqueous Hexacyanoferrate(II) Solution

By Shin-ichi Ohno

(Received June 28, 1965)

As has been reported previously,¹⁾ the irradiation of aqueous hexacyanoferrate(II) solutions at 2537Å results in the formation of hexacyanoferrate(III) ions and hydrated electrons, e⁻aq:

$$Fe(CN)_6^{4-} \rightarrow Fe(CN)_6^{3-} + e_{aq}^{-}$$
 (1)

The limiting quantum yield, obtained at high concentrations of an electron scavenger, N_2O or NO_3^- , was 0.35 at 25°C. This communication will present some results of the investigations into the reactivities of hydrated electrons and OH radicals using the above photochemical system.

In the Fe(CN)₆⁴-N₂O systems, the photochemical reaction 1 is followed by:

$$e^{-}_{aq} + N_2O \rightarrow N_2 + OH + OH^{-}$$
 (2)²⁾

$$Fe(CN)_6^{4-} + OH \rightarrow Fe(CN)_6^{3-} + OH^-$$
 (3)

The addition of other solutes which compete efficiently with N_2O for e^{-}_{aq} reduces the N_2 yields:

$$e^{-}_{aq} + S \rightarrow S^{-} \tag{4}$$

Thus, the relative rates can be obtained. In those cases where the S⁻ produced reduces the Fe(CN)₆³⁻ ion, the ratio of the rate constants, k_4/k_2 , can also be calculated from the measured hexacyanoferrate(III) yields. Some results obtained are shown in column a of Table I.

In the $Fe(CN)_6^4 - NO_3^-$ systems containing other electron acceptors, the observed yields of nitrite^{1,3)} permit us to calculate the rates relative to nitrate. Table I, column b, shows some of these results.

Table I. Relative reactivity of various solutes towards e^-_{aq} , normalized to $k(e^-_{aq}+N_2O)=100$ or $k(e^-_{aq}+NO_3^-)=100$

a		ь	
N_2O	=100	NO ₃ -	=100
H+	220	N_2O	35
NO_3	286	O_2	250
$Fe(CN)_{6^{3}}-$	120	CO_2	38
Acetone	150	H_2O_2	210
$H_2PO_4^-$	1.6	Acetone	45
$\frac{\mathrm{HPO_4^{2-}}}{\mathrm{ClO_4^{-}}}$	Unreactive	Cl- Methanol	Unreactive

The solutes, RH, which compete with Fe(CN)₆⁴⁻ in the reaction with OH to yield the reducing radicals, R;

$$RH + OH \rightarrow R + H_2O$$
 (5)

$$Fe(CN)_6^{3-} + R \rightarrow Fe(CN)_6^{4-} + R^+$$

reduce the yields of hexacyanoferrate(III), and the rate constant ratios, k_5/k_3 , can be calculated. Table II shows some of these results, $k(OH+Fe(CN)_6^{4-})$ being taken as 100.

Table II. Reactivity of some solutes towards OH radicals, normalized to $k(OH+Fe(CN)_e^{4-})=100$

$Fe(CN)_{6}^{4-}$	=100
Methanol	6.1
Ethanol	16
2-Propanol	23
HCOO-	26
Br-	5.4
Glycine	2.8
D-Glucose	≈8

Japan Atomic Energy Research Institute Tokai-mura, Ibaraki-ken

¹⁾ S. Ohno and G. Tsuchihashi, This Bulletin, 38, 1052 (1965).

²⁾ F. S. Dainton and D. B. Peterson, Proc. Roy. Soc., A267, 443 (1962).

³⁾ A. Appleby, G. Scholes and M. Simic, J. Am. Chem. Soc., 85, 3891 (1963).